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Abstract 

We study the CohenPMacaulayness and the defining equations of Rees algebras of ideals 
with good residual intersection properties, especially for ideals having second analytic deviation 
one. In particular we show that, under certain conditions, the Cohe+Macaulayness of the Rees 
algebra forces the ideal to have the expected reduction number. @ 1997 Elsevier Science B.V. 

I. Introduction 

Let R be a Noetherian ring and let I be an R-ideal. There is a canonical morphism 

x : S(I) + R[lt] 

from the symmetric algebra of I onto the Rees algebra R[lt] = ejzO Zj. The symmetric 

algebra of I is defined by the linear relations on I, which are determined by giving 

a presentation matrix of 1. The ideal I is said to be of linear type when r is an 

isomorphism. Otherwise we define the relation type of I, rt(Z), to be the maximal 

degree of a minimal generator of .d = ker x. 

One may study the Rees algebra more intrinsically by considering reductions. Sup- 

pose that R is local with infinite residue field k. An ideal J c I is a reduction of I 

if the extension of Rees algebras R[Jt] c R[lt] is finite, or equivalently if I’+’ = JZ’ 

for some integer I- > 0. Denote the least such r by F-J(Z). A reduction J is a minimul 

reduction of I if it is minimal with respect to inclusion among all reductions of I. The 
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reduction number of I is then defined by r(i) = min{rJ(Z) / J is a minimal reduction 

of Z}. An important invariant is the unulytic spreud C(I), which is the minimal number 

of generators v(J) of any minimal reduction J of I, or equivalently the dimension of 

the fiber ring R[lt] 8~ k [ 151. 

If I is of linear type, then in particular V(I) = Y(I), or in other words I is 

generated by analytically independent elements. In general, it is useful to define 

the second analytic deuiution to be the nonnegative integer v(Z) - P(I). (If 1 has 

grade 9, the analytic deviation [IO] is /(I) - 61, while the deviation is v(Z) - s.) 

In Theorem 4.3, we show that there exist perfect prime ideals which are not of 

linear type, but are locally generated by analytically independent elements (answer- 

ing a question of [ 191). However, the second analytic deviation zero case is mostly 

well-understood for various classes of ideals, such as the class of strongly Cohen- 

Macaulay ideals (cf. [S]). Recall that an R-ideal is strongly Cohen-Mucuuluy if the 

Koszul homology modules H, built on a generating set of I are Cohen-Macaulay. 

The first nontrivial case to study next is when I has second analytic deviation one. 

We will need to use some termininology of [20]. First, recall that if s is an integer, 

we say that I satisfies G,? if ~(1,~) 5 dim R, for all p E V(Z) with dim R, 5 s - 1. 

We say that I satisfies G, if f satisfies G, for every S. 

Definition 1.1. Let R be a local Cohen-Macaulay ring, let I be an R-ideal and let s 

be an integer. 

(a) A proper R-ideal K is an s-residual intersection of I if s > ht I and there is an 

R-ideal a c I, such that K = cl : I and ht K > s > v(a ). The s-residual intersection 

K is a geometric s-residual intersection if in addition ht I + K > s. 

(b) We say I satisfies AN,- if for every 9 5 i < s and every geometric i-residual 

intersection K of I, R/K is Cohen-Macaulay. 

The properties AN,-, called Artin-Nagata properties, are closely related to the Cohen 

Macaulayness of Rees algebras [9, 12, 13, 201. In the sequel, we will denote by .% the 

Rees algebra of I, and by G the associated graded ring yrtR = @,z0 Ij/lJ+’ ” .‘A@RR/I. 

We recall the following result on the Cohen-Macaulayness of the Rees algebra, which 

was one of the main results of [ 131: 

Theorem 1.2 [13,3.1]. Let R he II locul Cohen~~Mucuuluy ring of dimension d with 

infinite residue jield, let I he un R-ideal ujith grude g, analytic spread / and rednction 

number r, let k > 1 he un integer with r < k and assume that I satisfies G/ and 

AN{:, locully in codimension f - 1, thut I sutis$es AN,,y,,ax(2 x-), and that depth 

R/Ii > d - L + k - j jar 1 5 j 5 k. Then G is Cohen-Mucuulay, and 98 is Cohen 

Mucuulay $ g 2 2. 

Knowing that these algebras are Cohen-Macaulay, it is natural to ask about the 

nature of their defining equations. Generalizing the result [13, 4. lo], we are able to 

compute the number and degrees of the defining equations of the Rees algebra: 
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Theorem 2.6. In u&ition to the ussumptions of Theorem 1.2, assume that I satisfies 

ANfP_2 and that S/(I) g IJ for 1 5 j < I-. Then &’ is minimally generated by (:I:‘_‘,) 

,fi)rms of degree r + 1. 

For a perfect Gorenstein ideal of grade 3, having second analytic deviation one and 

reduction number r 5 (P - g + 1, we are able to explicitly describe the equations of 

its Rees algebra (Theorem 2.10). They are obtained in a straightforward way from 

a Jacobian dual of the presentation matrix, which is analagous, but not identical, to 

the grade 2 case [23]. After the work of this paper was completed we learned that 

a similar result was proved by Morey [14] when the presentation matrix has linear 

entries. 

We are also able to show a partial converse of Theorem 1.2. Similar results have 

been obtained recently in [l-3] and by different methods in [22] and [ 171. 

Theorem 3.8. Let R be a local Gorenstein ring with infinite residue jield, let I be a 

strongly Cohen-Mucauluy R-ideal of grade g > 2, analytic spread d, und minimal 

number qf‘generutors n = e+ 1, assume that I satisfies G/, und that I c II(~)‘, where 

4 is u matrix with n rows presenting I. Then the following are equivalent: 

(a) After elementary row operations, the entries of one row generate I,(@). 

(b) r(l) 5 t - g + 1. 

(c) rt(l) 5 C - g + 2. 

(d) .d is cyclic. 

(e) .S? is Cohen-Macaulay. 

(f) G is Cohen-Macauluy. 

The equivalence of (e) and (f) with (a)-(d) is the new information in this result. 

The equivalence of (a)-(d), and that these imply (e) was proved by Simis et al. in 

[ 171 (without the condition that I c 11 (4)2). They also proved that (e) is equivalent to 

(a)-(d) when y = 2. The first instance of these results, especially rhe row condition 

(a), was studied by Aberbach and Huneke in [3]. In particular, by the structure theorem 

of [6] we obtain the equivalences in Theorem 3.8 for any perfect Gorenstein ideal of 

grade 3 satisfying G/ and having second analytic deviation one. 

2. Number of defining equations 

We will make use of the following remark. 

Remark 2.1 ([20,1.6],[10,3.2],[17,proof of 3.41). Let R be a local Cohen-Macaulay 

ring with infinite residue field, and let be I an R-ideal of grade 9, analytic spread G 

and assume that I satisfies GI. Then there exists a minimal reduction J of I and a 

generating set al,. . . , a/ of J with the following property: J is an d-residual intersection 

of I (or J = I), and for ai = (al,...,aj) with g < i 5 e - 1, ai : I is a geometric 
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i-residual intersection of i. Moreover, every permutation of nl,. , a/ enjoys the same 

property. 

Once and for all we will fix the choice of a minimal reduction J, and generating 

sets J = (a, ,__., n/), I = (a, ,__. ,u/ ,..., a,,) and the ideals ai = (a, ,._., a,) as in the 

above remark. 

We will need several lemmas, all of which are essentially known in somewhat less 

generality. 

Lemma 2.2. Let R he u local CohenMucuuluy ring with injinite residue field, let 

I he un R-ideul of grude g, anulytic spread /, ussume that I sutishes G,, let a, 

be the ideuls defined in Remurk 2.1, und ussume that G is CohenA4ucuuluy. Then 

(a,:(ai+,))nZj=ajZj-‘J~~O<iLC-l undj>i-g+l. 

Proof. By [3, 5.9 and 5.101 and Remark 2.1 one has the equation 

((a, + Zi+2) : (a,,, )) n Ii = a,lJ-’ + Ii+’ 

wheneverO<i</-1 andj~i-g+I.Butthen(a,:(aj+l))n~jcairi~’+IJfl. 

Since nk>, IJfk = 0, the result follows. 0 _ 

We will need the following result which complements Lemma 2.2 in low degrees. 

Lemma 2.3 [ 13,2.5]. Let R be a 10~1 CohenMucuuluy ring of dimension d lvith 

infinite residue field, let k und s he integers, let / be an R-ideul of analytic spreud 

L and assume that I sutisfies G, and AN/_, locally in codimension t - 1, that I 

satisfies AN,,-, that depth R/Ii > d - ! + k ~ j for 1 5 j < k, und let a, be the 

ideals us in Remark 2.1. Then (a, : (u,+ r )) n IJ = a,iJ-’ ftir 0 5 i 5 t - I und 

max{l,i-s} 5 j 5 k. 

Let S = R[T,, . . , Tn] be a polynomial ring over R, and present the Rees algebra as 

.9 cz S/Q, by mapping T, to a,t E R[lt]. 

Lemma 2.4. Let R be u local Cohen-Mucuuluy ring of dimension d with injinite 

residue field, let I be un R-ideal Iv,ith grude g und analytic spread P, assume that I 

satisfies G,, let k > 1 be un integer und assume one of the following conditions holds: 

(a) k > G - g und G is Cohen-Mucuuluy. 

(b) I satisfies ANfL3 locally in codimension / - 1, I sutishes AN{:,_,, and depth 

R/Ij>d-/t-k-jfor 1 <j<k. 

Then 

Proof [2, 2.11. It will be enough to prove [( Tr,. . _, T,) n Q]k+t c [Q]J$ for 0 < i < 8, 

which we do by induction on i. Since i = 0 is trivial, we may assume i > 1 and that the 
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result holds for smaller i. Let F E ( TI, . ,7’i) n Q be a form of degree k + 1 and write 

F = XI=, GjTj where G, E [S]k. Evaluation gives 0 = xi=, Gj(al , . . , a, )ui, hence 

G;(a) E (ai- : (a,)) n I” = ai_ll”-’ by Lemma 2.2 in case (a) or by Lemma 2.3 in 

case (b). Hence there are forms NI, . . ..H.-1 E [S]k-1 for which P = Gi-Cjli HiTj E 

[Q]kS. But then F - T,P = C:ll(Gj + TiHj)T, E [(Tl,...,Ti-1) n Q]k+l C[Q]n_S by 

induction, hence F E [Q]$. q 

Proposition 2.5. Let R he u local Cohen-Mucuuluy ring of dimension d Juith infinite 

residue ,field, let I he un R-ideal with unulytic spread ! and reduction number r, 

assume that I satisfies G/ and AN/-__, locally in codimenson / - 1, that S,(I) E Ii 

und depth R1I.i > d - / + k - j for 1 5 j 5 r, und that I suti,$es AN,-_+. Then 

4[4,.+1) = (;I:“, >. 

Proof. Consider the exact sequence 

which in degree r + 1 is 

0 A [=%+I * Sr+l(I) + I r+l --f 0. 

Now if r = 0 then n = F’, and .Ca = 0 by [20, 1.111. Hence we may assume that Y > 0. 

Since we may present .R ” S/Q and S(I) F S/L, where L is the ideal generated by the 

linear forms in Q, we have .d 2 Q/L. The latter exact sequence will induce an exact 

sequence 

0 --t [cd],.+, ---) &+,(I/J) + I’+‘/JZ’ + 0 

once we have have shown that [(L, T1 , . . , T/) n Q]k+, c L, or equivalently that 

[(TI,. , TO n Q],++, c L. But this is clear from Lemma 2.4(b) since by the assumption 

on the symmetric powers we have [Q]kS c[Q]lS = L. As I’+‘/JY = 0, we conclude 

that [,d],.+l g S,.+,(Z/J) from which the result is immediate. 0 

This proposition allows us to compute the number of defining equations for the 

Rees algebras of ideals having the minimal reduction number. We take this to mean 

that S,(I) G I’ for 1 < j I r (and Y > 0), or equivalently that &‘,.+I is the first 

nonvanishing component of S, where Y = r(I) is the reduction number. 

Theorem 2.6. Let R he a local Cohen-Mucuulay ring of dimension d lvith injnite 

residue ,$eld, let I he an R-ideal with unalytic spreud /, minimal number of generators 

n, und reduction number Y and ussume that I satisJCie.s Gi and AN(-_2, and that S,(I) ” 

Ii und depth R/Ii > d - rf + Y -j fbr 1 < j 5 Y. Then -13 is minimully generated by 

(:I:?, ) ji)rms oj’degree r + 1. 

Proof. By [13, 4.61 we have vt(l) < Y + 1. The result now follows from Proposi- 

tion 2.5. 0 



Corollary 2.7 [ 13, 4.101. Let R he u local Cohen-Mucuulay ring with infinite residue 

,field, let I be u strongly Cohen-Mucuuluy R-ideul of grade g, with analytic spread / 

and minimal number of’generutors II, and ussume that I satisfies Gr and that r(I) 5 

P - g i I. Then .d is minimully gtweruted by (;‘_;I:) forms of degree L - g + 2. 

Proof. Since I is strongly CohenMacaulay, it satisfies AN,F by e.g. [9, 3.31, and by 

[8, proof of 4.61 S,(I) e I’ whenever 1 < j < / - <I+ 2. The result now follows from 

Theorem 2.6. 0 

Corollary 2.8. Let R he a locul Cohen-Mucuuluy’ ring with infinite residue ,jield, and 

let I he un R-ideal with unulytic .spreud !, minimal number of generutors n, und 

ussume that I satisfies G/,1 und AN,-_,, and thut depth R/I 2 d - C. Then .d is 

minimully generated by) (“-‘: ) quutlrics. 

Proof. Since I satisfies ANfz2, it follows by [20, 1.81 that v(IP) = /(ZP) whenever 

dim R, = /. Hence by [20, 4.11 or [ 13, 4.71 it follows that r(l) < 1, and the result 

thus follows from Theorem 2.6. U 

The condition AN(12 is somewhat harmless in small analytic deviation. In analytic 

deviation one it is vacuous, while in analytic deviation two, it is equivalent to Cohen- 

Macaulayness (at least if I is unmixed and R is Gorenstein (e.g. [20])). Thus one 

obtains: 

Corollary 2.9. Let R he u local Gormstein ring with injinite residue ,field and let I 

be an R-ideul with grade g, unulytic spreud / und assume that I satisfies G/+1. 

(a) IJ’ / = g + 1 and depth R/I > dim R/I - 1 then .d is minimully generated by 

(“y”) quudrics. 

(b) If’ / = g + 2 and R/I is C~~l~c~rz~Mucaulu~~, then .d is minimally generuted by 

(“-y-‘) quudrics. 

Now let R be a local Gorenstein ring with infinite residue field, and let I be a 

strongly Cohen-Macaulay ideal satisfying G/, having second analytic deviation one and 

the expected reduction number T-g+ 1. By [ 171 (or Theorem 1.2 and Corollary 2.7) the 

Rees algebra &’ is Cohen-Macaulay and .J is generated by a single form in degree 8- 

9+2. We now consider the problem of computing the single generator of .d explicitly. 

This has been studied when I is a perfect ideal of grade 2 by Vasconcelos [23]. 

Let 

be a minimal presentation of I, where d, is a matrix with n rows. Recall that the 

symmetric algebra has a presentation S(I) Z R[T,, , T,]/(P1,. . . , f,) defined by the 

equations 

(/l,...,C,) = (TI,..., T,,)$. 
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It also follows from [ 171 (or Proposition 3.2) that q!~ satisfies the row condition: after 

elementary row operations, the entries of It (4) can be generated by the last row of 4. 

Moreover, it is known that /t(4) is Gorenstein [ 17, 4.131 and has height ( [8, 9.11, 

but let us assume further that it is a complete intersection and choose a generating 

set It($) = (xt , . ,x/). Now we may assume after row and column operations that 

II(~) is generated by the entries of the last row from among the first / columns. 

Let $ be the / by / submatrix of C$ obtained by deleting the last row and the last 

nz - / columns, and over the polynomial ring R[T,, . ,1”/] consider a Jacobian dual 

[16] of I/?: 

(Tl,..., r/,+ = (XI,...,X/)&$). 

Here B = B(I,!I) is an F by / matrix whose entries are linear forms in the variables 

Tt , , T,. The characteristic polynomial of B determines a relation on the Rees algebra. 

Now in particular, let I be a perfect Gorenstein ideal of grade 3 satisfying Gt and 

the row condition. By the structure theorem of [6], Q, may be taken as an alternating n 

by n matrix, and that It (4) is generated by the last row of the 4. Since 4 is alternating, 

it follows that I,(4) is automatically a complete intersection. 

Theorem 2.10. Let R he a local Gorenstein ring with irtjinite residue ,jield, let I he 

u perject Gorenstein ideal of grade 3, with analytic spreud /, tninirnul nurnher qf 
generators n = / + 1, and assume that I satisfies Gt, let 4 he an n by n alternating 

matrix presenting I with last row (-xl,. , -x/,0) ivhich generates the ideal qf’entries 

oj’ 4 und let $ he the / by P alternating suhnzatrix of 4 obtained by deleting the 

last ro)i’ and column. Then there exists a Jucohian duul B = B($): 

(TIT..., T/M = (Xl,...,.V)R($) 

such that ~2 is generated by F = T,-‘xB( T,,), where xB(T,,) denotes the characteristic 

polynomial of’B in the variable T,. Moreover, if we let 11/1 denote the jth column of 

$, far 1 5 j 5 /, and write lclJ = Aj(g)t, where A, is an / by P matrix wlhose jth roll 

consists of’ zeros and trhose ith row, ji)r any 1 5 i 5 /, is the negative of’ the jth ro\L 

of' A,, then B may he taken to he the matrix whose jth column is AS(T)‘. 

Proof. It is enough to prove the second statement. Let a,; and bij be the ijth entry 

of the matrices Ic, and B respectively, and let aljk be the ikth entry of At. Then write 

alj = xi=, u,,kXk and bij = xi=, akj,Tk, where UIJk = -U,,k for i # j and ai,k = 0 for 

i = j. Let {zljk} be a new set of variables with zlik = -z,,k for i # j and z,jX_ = 0 

for i = j, and define 22, = CL=, Zi,kXk and &lj = c’. x=, Zkii Tk Denote by $ and B the 

matrices whose ijth entry is Eli and ii,, respectively. It follows that L? is a Jacobian 

dual of 4: 

(TI,..., T,)$ = (x~,...,x/)B. (2.11) 

Now it will be enough to show that det(j) = 0. For then by specializing, it holds 

that det(B) = 0, and hence that T, divides the characteristic polynomial XB(T,) of B. 



Since the characteristic polynomial may be obtained as a minor of a Jacobian dual of 

4, it is clear that xa(Tn) is a relation on the Rees algebra. But by Corollary 2.7, .d 

is cyclic, hence since the quotient F’ = T,-‘xe( T,) is manic, it is the required form of 

degree / - 1 = / - y + 2. 

Now to show the claim, multiply Eq. (2.11) on the right by the column (T,, . , To’. 

Since rj is an alternating matrix, 

(X)&T,). .) T/)’ = 0. 

Since the x’s form a regular sequence, the entries of the matrix B(Tl, . . , Tt)’ belong 

to the ideal generated by (XI ,. ..,x/) and the subring over k generated by the T’s and 

the z’s It follows that B( T,, . , T, )’ = 0 and hence that det(B) = 0. 0 

Example 2.12. Let 1 c k[[x, y,z, MI]] be the defining ideal of the Gorenstein monomial 

curve k[[t’, th, t’, t’]]. Then I has a presentation matrix 4: 

i 

0 z W J’ Y 
-z 0 x2 - 1-1, W-Y’ W 

- I-L’ w - x2 0 0 z. 

-Y y-w 0 0 x 

-y --w --z --x 0 1 

Since Z,(4) = (x, y,z, IV), (I, satisfies the row condition. Deleting the last row and 

column, we obtain the Jacobian dual B : 

-T4 T4 0 

- T, T, - T, T, - Tz 

-T2 TI 0 

0 -xT3 xT2 

Dividing the characteristic polynomial XB( T,) by T, gives us the nontrivial cubic 

relation on the Rees algebra: 

T,~+~T~T;+T:TT~+T,T~T~-T;T5-T2T;-T;T4+2T,T2T4 

-TfT4 +xT2TjTs +xT2T3T4 +xT2T; -xT,T; -XT;. 

3. Expected reduction number 

In this section we now restrict to the case when I has second analytic deviation one, 

and attempt to give converses to Theorem 1.2 asserting that I has a “small” reduction 

number. 

The next result follows exactly as in [2], but we repeat the proof for convenience. 

Lemma 3.1. With the ussumptions qf’ Lemmu 2.4, assume in addition n = C + 1, and 

let 4 hr n minimal presentation rnrrtris of’ I. Then ll(4)[Q]k+l c [Q]kS. 
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Proof. Let F E [Q]k+l and write F = YT,“” + G where G E [(r,, . . . , Tf)lj and a E R. 

Since Lemma 2.4 clearly holds for any permutation of Tt,. . . , T, (by Remark 2.1) 

and x E Ii(@), we may assume x E (al,..., a,_ 1) : (a,). Hence there is a linear form 

H = XT, + cl=, r,Ti E [Q]l,rl E R. But then xF = xxT,k+’ +xG = (YT~H - ctT,k(H - 

XT,,) +xG E QI + [( Tl,. , To n Q]k+l c[Q]kS by Lemma 2.4. 0 

The following shows that the row condition is satisfied, under mild conditions, when 

I has second analytic deviation one with the minimal reduction number. 

Proposition 3.2. Let R be a lacul Cohen-Macaulay ring of dimension d with infinite 

residue ,jield, let I he an R-ideal with analytic spread d, minimal number of generators 

n = / + 1 and reduction number r, assume that I satisfies Gf and ANfPP3 locally 

in codimension / ~ 1, that I satisfies AN,ZPrP,, that S,(I) ” Ii and depth RJIj > 

d - / + r ~ j jar 1 < j < r, and let 4 be a matrix presenting I with n rows. Then, 

after elcmentary~ row operations, the entries of one row generate II (4). 

Proof. Let J be a minimal reduction as in Remark 2.1 and put K = .I : I = J : (a, ), 

which is, after elementary row operations, the ideal generated by the last row of 4. 

Hence it is enough to show that K = II (4). 

By Lemma 3.1, 1,(4)[Q],.+t c[Q]J = [Q]tS by assumption on the symmetric pow- 

ers (note that r > 1). Let F E [Q],.+I with F = Ti+’ + G with G E [(Tl,. , , T/)1,.+,. 

Let x E It (4). Then XF E [Q]lS and hence there is an equation xF = XT;+’ + XC = 

C:“, L,H, where L, E [Q] 1 and H, E [S],. But by comparing the coefficients of the 

term TL” it is clear that x E K. 0 

We are now ready to prove one of our main technical results, which has been shown 

in [2] and [I] for ideals having small analytic deviation. 

Theorem 3.3. Let R be a local Cohen-Macaulay ring of dimension d with infinite 

residue field, let I be an R-ideal of grade g, analytic spread C, and minimal number 

qf generators n = / + 1, assume that I satisfies Gt, that G is Cohen-Macaulay, that 

I c II($)’ jar some e > 2 and minimal presentation matrix 4, let k 2 1 be an integer 

such that S](I) ” I,i jar 1 5 j < k, and further assume that one of the ji,llowing 

conditions holds: 

(b) depth R/I-l > d - g - j - 1 jar 1 < j < F - g - 2, I satisfies AN/l,_,, and I 

satisjies AN,-_, locally in codimension G ~ 1. 

Then r(I) F / - g + 1 + (/ - g + 1 - k)/(e - 1). 

Proof. Let r = r(I) > k and choose a form F E [Q],.+l with F = Ti+’ + G where 

G E [(TI,...,T/>I,-+I. Since F E [QL+I, repeated application of Lemma 3.1 gives 

II(~$)~-~+‘F E [Q]kS. (Note that in case (b) the condition on the depth of R/I’-“-’ 

is satisfied by [7, 3.31 as G is Cohen-Macaulay.) By the assumption on the symmetric 
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powers we have [Q]$c[Q]lS, hence ll(+))-/ii ‘F E [Q]lX Now as in the proof 

of Proposition 3.2, it follows that /I ($J)‘~~+’ c K. Let 5 = [(r - k + 1 )/(e)l. Then 

by the assumption / c I,( t$)', we have It+’ = ItI ~(ll(~)')rl~l,(rb)'-~+'l~ KI 

= (J : I)I CJ. In particular, Il+‘p’/4 ' cJI'-". The result now follows from the next 

lemma. 0 

Lemma 3.4. Let R he II locul Cohen-Mucauluy ring with infinite residue field, and 

let I he un R-ideul with unulytic spreud / utzd ussume thut I sutis$es G/, thut G is 

Cohen-Mucuuluy, that .J is u minimul reduction of I with ht J : I > t, und that 

l”+’ c JI’-“, ,jtir some integer n > 1. Then I’lf’ = JI”. 

Proof. Using Remark 2.1 this follows from [3, proof of 5.21. q 

Theorem 3.5. Let R be u locul Gorctzstcin ring of’ dimension d with injinite residue 

field, let I be un R-ideul qf’grude -/ 2 2, unul~~tic spreud / and minimal number of 
yenerutors n = / + 1, und ussume thut I sutisi$>s G/, that depth RJli > d - g - j + 1 

,for 1 < j 5 If - y + 1, and thut I c II (q5)'-~~f2, nvhere q5 is u matrix with n rows 

presenting I. Then the ,fi)llol~+ng com1ition.s ure equivalent: 

(a) After rlementury roH’ operutions, the entries of one row generute II (4). 

(b) r(I) < /; - g + 1. 

(c) .X is Cohen-Mucuuluy. 

Proof. Since I has second analytic deviation one, (a) and (b) are equivalent by 

[21, 5.11. Now as I satisfies AN,- by [20, 2.91, (b) implies (c) by Theorem 1.2. 

Then in particular G is Cohen-Macaulay [ 11, I.11 and thus (c) implies (b) by 

Theorem 3.3. I7 

Naturally we can obtain stronger results by assuming the vanishing of the torsion of 

sufficiently many symmetric powers. 

Corollary 3.6. Let R be u locul Cohen-Mucuulq ring with irtfinite residue jield, let 

I he un R-ideul with analytic spreud /, und mininlul number of generators II = P + 1, 

let d, he u minimul presentution mutrix, and assume thut I suti$es Gr, that G is 

Cohen-Mucuuluy and thut S,(I) g I’ for 1 < j < / - y + 1. Then 

(a) .~J-~,+z # 0. 
(b) Jf’I cl,(qb)*, then r(I) = / ~ q + I. 

Proof. (a) Put k = max{j 1 S,(I) ” I’}. S ince k > F-y+ 1, I satisfies the assumptions 

of Theorem 3.3(a). But by the proof, setting e = I shows that k 5 G - g + 1. As for 

(b), by the assumption on the symmetric powers, r(1) = 0 or r(l) > C - Q + I. Since 

n > t, the result follows from Theorem 3.3. C 

Remark 3.7. Under the assumptions of Theorem 3.3 (a) or (b), assume that e > 

[(I! - k)/(q - 1) + l] and that H > 2. Then .# is Cohen-Macaulay. 
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Proof. Since I satisfies G/, it is enough to show that r < ( by [4, 5.11 or [17, 3.61. 

But since e = [(/ - k)/(g - 1) + l] > 2 by Corollary 3.6(a), the result follows from 

Theorem 3.3. 0 

The following theorem complements one of the main results of [ 171. It applies 

immediately to grade 2 perfect ideals and grade 3 Gorenstein ideals satisfying G, and 

having second analytic deviation one. 

Theorem 3.8. Let R be u locul Gorenstein ring with infinite residue ,field, let I he u 

strongly Cohen-Mucuulu~~ R-ideul qf grude y > 2, unulytic spread /, und minimul 

number oj’generutors n = f + 1 and assume thut I satisjies G/, und that I c I,(4)‘, 

tchere 4 is u matrix with n row presenting I. Then the fbllowing ure equivalent: 

(a) A,fter elementury ro\z’ operations, the entries of one row generate II($). 

(b) r(Z) 5 F-g+ 1. 

(c) rt(1) 5 / - y + 2. 

(d) .d is cyclic. 

(e) ,?A is Cohen-Mucauluy. 

( f ) G is Cohere-Mucuuluy. 

Proof. By [17, 4.91, (a), (b), (c), and (d) are equivalent and each implies (e) (the 

latter also following from Theorem 1.2). One knows that (e) implies (f) by [I 1, I. I], 

while now (f) implies (b) by Corollary 3.6(b). 0 

Remark 3.9 [21,2.11]. Under the assumptions of Theorem 3.8, let s = v(ll(+)). Then 

type .#=s+g-2 and type G=s+ I. 

Remark 3.10. The condition 1 c I, (#) * in Theorem 3.8 is really essential. A. Simis 

and B. Ulrich (unpublished) have discovered examples of strongly Cohen-Macaulay 

generically complete intersection prime ideals, with second deviation one in a Goren- 

stein ring (the diagonal ideal of a certain codimension 3 Gorenstein algebra) for which 

G is Cohen-Macaulay but .% is not. 

4. Analytically independent elements 

One can use the results of the previous sections to say something about ideals 

having second analytic deviation zero, i.e. ideals generated by analytically independent 

elements. Recall that an ideal is syzygetic if S*(Z) 2 1’; if I is generically a complete 

intersection, this is equivalent to the torsion-freeness of H,(I) over R/I. 

Proposition 4.1. Let R he a locul Cormstein ring of dimension d, and let Z he un R- 

ideul oj’grude g and ussume thut I sat&lies G,, thut I is generated by n analytically 

independent elements und that G is Cohen-Mucuuluy. Then 

(a) rt(Z) 5 n - 9. 



(b) Assume ,jiirther thut depth RlIj > d - g - j + 1 for 1 < j 5 n - y - 2. Then Z 

is of linear type $ and only if I is syzygetic. 

Proof. We may assume the residue field is infinite. Part (a) follows from Lemma 

2.2 and [18, 3.31 since n = /(I). Now for (b) since G is Cohen-Macaulay, depth 

R/InPq-’ > d - P by [7, 3.31, and thus I satisfies AN,-, by [20, 2.91. Since I is 

syzygetic, by part (a) it is enough to show S,(I) % Ii whenever 3 < j < n - y. 

But since I = J for any reduction J of I, this follows from Lemma 2.4 by induction 

on j. 0 

Corollary 4.2. Let R he a locul Gorenstein ring und let I be a Cohen-Mucuuluy ideal 

of deviation three sutisjjling G, lvith G Cohen-Mucuuluy. Then I is of‘ linear type 

iJ’and only f I is syzygetic. 

Proof. It is enough to show that n = f(I). But if n = g + 3 > / then I would 

automatically satisfy ANJ-_2 by e.g. [20, 2.91. As I satisfies G,, it would follow that I 

has reduction number at most one [ 13, 4.71. Since I is syzygetic, this would contradict 

the fact that r(l) > 0. 0 

G. Valla asked if a prime ideal in a regular local ring which is generated by analyti- 

cally independent elements is necessarily of linear type. A counterexample was pro- 

duced in [16]. It is a normal homogeneous Cohen-Macaulay prime ideal of grade 3 

and deviation 3, in a polynomial ring over a field in 9 variables, which satisfies G, 

and whose Rees algebra is Cohen-Macaulay. It follows by the result above that no 

such example can even be syzygetic. But Ulrich asked in [19] if a prime ideal is of 

linear type if the ideal is locally generated by analytically independent elements. 

Theorem 4.3. There exist hon~oyen~w.~s perjtict prime ideals in k[x,, .,x6] (k an 

injinite jield) of grade 3 and deviation 3 which are locally generuted by analytically 

independent elements but ure not of’ lineur type. 

Proof. Take the above counterexample of [16] and specialize it by three general linear 

forms. This produces by Bertini’s theorem the required prime ideal, in a six dimen- 

sional polynomial ring, which still satisfies G,, is generated by analytically indepen- 

dent elements and is not of linear type since the associated graded ring specializes [7]. 

The ideal is of deviation at most two on the punctured spectrum, hence is strongly 

Cohen-Macaulay [5] and hence of linear type [8, 9.11, locally on the punctured 

spectrum. 0 
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